Contribution of Changes in Sea Surface Temperature and Aerosol Loading to the Decreasing Precipitation Trend in Southern China
نویسندگان
چکیده
The effects of increasing sea surface temperature (SST) and aerosol loading in a drought region in Southern China are studied using aerosol optical depth (AOD), low-level cloud cover (LCC), visibility, and precipitation from observed surface data; wind, temperature, specific humidity, and geopotential height from the NCEP–NCAR reanalysis fields; and SST from the NOAA archive data. The results show a warming of the SST in the South China Sea and the Indian Ocean, and a strengthening of the West Pacific Subtropical High (WPSH) in the early summer during the last 40 yr, with the high pressure system extending farther westward over the continent in Southern China. Because the early summer average temperature contrast between the land and ocean decreased, the southwesterly monsoon from the ocean onto mainland China weakened and a surface horizontal wind divergence anomaly occurred over Southern China stabilizing the boundary layer. Thus, less moisture was transported to Southern China, causing a drying trend. Despite this, surface observations show that AOD and LCC have increased, while visibility has decreased. Precipitation has decreased in this region in the early summer, consistent with both the second aerosol indirect effect (reduction in precipitation efficiency caused by the more numerous and smaller cloud droplets) and dynamically induced changes from convective to more stratiform clouds. The second aerosol indirect effect and increases in SST and greenhouse gases (GHG) were simulated separately with the ECHAM4 general circulation model (GCM). The GCM results suggest that both effects contribute to the changes in LCC and precipitation in the drought region in Southern China. The flooding trend in Eastern China, however, is more likely caused by strengthened convective precipitation associated with increases in SST and GHG.
منابع مشابه
Investigation of Long Term Trend of Spatio-Temporal changes of Sea Surface Temperature in Oman Sea
Considering the vast application of sea surface temperature in climatic and oceanic investigations, this parameter was studied in Oman Sea from 1986 to 2015. The SST was surveyed using trend analysis and Global and local Moran’s I spatial autocorrelation. In trend analysis, the Mann-Kendall test was used to determine the trend of SST changes and the Sen's Estimator method was used to examine th...
متن کاملTrend of the Caspian Sea surface temperature changes
The interaction between sea and atmosphere has profound effects on the regions climate. Meanwhile, the sea surface temperature is considered as one of the most effective components of water bodies, and the controller of many atmospheric behaviors. Because of the importance of sea surface temperatures effects on atmospheric elements and also given the role of global warming on land and sea surfa...
متن کاملPrecipitation Trends Analysis in Southwest Asia during the Last Half Century
Precipitation is a climatic elements that have temporal - spatial distribution. In this research database of Global Precipitation Climatology Centre (GPCC) with a resolution 0.5×0.5 degree for 50 year is used, that was constituted with dimensions of 12800*600. Temporal data are on the columns and pixels (spatial data) located on the rows. The results show an increasing trend in spring and fall ...
متن کاملThe Trend Analysis and Forecasting of Extreme Temperature Parameters in southern part of the Caspian Sea
Increasing CO2 emissions and consequently, air temperature causes climate anomalies which affects all the aspects of human life. The purpose of this study was to assess the temperature changes and also to predict the extreme temperatures in Gilan and Mazandaran Provinces. To do this, the SDSM statistical and dynamical model was used. As well, it was applied the Mann-Kendal graphical and statist...
متن کاملCaspian Sea south coast future climate change estimations through regional climate model
. Caspian Sea south coast future climate change estimations through regional climate model many physical of the procedures related to climate change are not perceived thoroughly. Scientific knowledge used to show those procedures completely, and to analyses forecasts is so complex, since most current studies about climate physical model have been done through semi experimental and random model...
متن کامل